Data-Pattern Discovery Methods for Detection in Nongaussian High-dimensional Data Sets

Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers. pp. 545-549. 2005
Data-Pattern Discovery Methods for Detection in Nongaussian High-dimensional Data Sets
Cécile Levasseur, Ken Kreutz-Delgado, Uwe Mayer, Gregory Gancarz
eBay Authors
Abstract

Many important expert system applications depend on the ability to accurately detect or predict the occurrence of key events given a data set of observations. We concentrate on multidimensional data that are highly nongaussian (continuous and/or discrete), noisy and nonlinearly related.

We investigate the feasibility of data-pattern discovery and event detection by applying generalized principal component analysis (GPCA) techniques for pattern extraction based on an exponential family probability distribution assumption.

We develop theoretical extensions of the GPCA model by exploiting results from the theory of generalized linear models and nonparametric mixture density estimation.

Another publication from the same author:

Proceedings of the Sixteenth ACM Conference on Economics and Computation (EC '15). ACM, New York, NY, USA (2015)

Canary in the e-Commerce Coal Mine: Detecting and Predicting Poor Experiences Using Buyer-to-Seller Messages

Dimitriy Masterov, Uwe Mayer, Steve Tadelis

Reputation and feedback systems in online marketplaces are often biased, making it difficult to ascertain the quality of sellers. We use post-transaction, buyer-to-seller message traffic to detect signals of unsatisfactory transactions on eBay. We posit that a message sent after the item was paid for serves as a reliable indicator that the buyer may be unhappy with that purchase, particularly when the message included words associated with a negative experience. The fraction of a seller's message traffic that was negative predicts whether a buyer who transacts with this seller will stop purchasing on eBay, implying that platforms can use these messages as an additional signal of seller quality.

Another publication from the same category: Machine Learning and Data Science

IEEE Computing Conference 2018, London, UK

Regularization of the Kernel Matrix via Covariance Matrix Shrinkage Estimation

The kernel trick concept, formulated as an inner product in a feature space, facilitates powerful extensions to many well-known algorithms. While the kernel matrix involves inner products in the feature space, the sample covariance matrix of the data requires outer products. Therefore, their spectral properties are tightly connected. This allows us to examine the kernel matrix through the sample covariance matrix in the feature space and vice versa. The use of kernels often involves a large number of features, compared to the number of observations. In this scenario, the sample covariance matrix is not well-conditioned nor is it necessarily invertible, mandating a solution to the problem of estimating high-dimensional covariance matrices under small sample size conditions. We tackle this problem through the use of a shrinkage estimator that offers a compromise between the sample covariance matrix and a well-conditioned matrix (also known as the "target") with the aim of minimizing the mean-squared error (MSE). We propose a distribution-free kernel matrix regularization approach that is tuned directly from the kernel matrix, avoiding the need to address the feature space explicitly. Numerical simulations demonstrate that the proposed regularization is effective in classification tasks.

Keywords