An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels

IEEE Transactions on Neural Networks, 2003
An efficient method for computing leave-one-out error in support vector machines with Gaussian kernels
Abstract

In this paper, we give an efficient method for computing the leave-one-out (LOO) error for support vector machines (SVMs) with Gaussian kernels quite accurately. It is particularly suitable for iterative decomposition methods of solving SVMs.

The importance of various steps of the method is illustrated in detail by showing the performance on six benchmark datasets. The new method often leads to speedups of 10-50 times compared to standard LOO error computation. It has good promise for use in hyperparameter tuning and model comparison.

Another publication from the same category: Machine Learning and Data Science

WWW '17 Perth Australia April 2017

Drawing Sound Conclusions from Noisy Judgments

David Goldberg, Andrew Trotman, Xiao Wang, Wei Min, Zongru Wan

The quality of a search engine is typically evaluated using hand-labeled data sets, where the labels indicate the relevance of documents to queries. Often the number of labels needed is too large to be created by the best annotators, and so less accurate labels (e.g. from crowdsourcing) must be used. This introduces errors in the labels, and thus errors in standard precision metrics (such as P@k and DCG); the lower the quality of the judge, the more errorful the labels, consequently the more inaccurate the metric. We introduce equations and algorithms that can adjust the metrics to the values they would have had if there were no annotation errors.

This is especially important when two search engines are compared by comparing their metrics. We give examples where one engine appeared to be statistically significantly better than the other, but the effect disappeared after the metrics were corrected for annotation error. In other words the evidence supporting a statistical difference was illusory, and caused by a failure to account for annotation error.

Keywords