Anatomy of a Web-Scale Resale Market: A Data Mining Approach

in Proceedings of the 22nd international conference on World Wide Web (WWW ’13)
Anatomy of a Web-Scale Resale Market: A Data Mining Approach
Yuchen Zhao, Neel Sundaresan, Zeqian Shen, Philip Yu

Reuse and remarketing of content and products is an integral part of the internet. As E-commerce has grown, online resale and secondary markets form a significant part of the commerce space. The intentions and methods for reselling are diverse. In this paper, we study an instance of such markets that affords interesting data at large scale for mining purposes to understand the properties and patterns of this online market.

As part of knowledge discovery of such a market, we first formally propose criteria to reveal unseen resale behaviors by elastic matching identification (EMI) based on the account transfer and item similarity properties of transactions.

Then, we present a large-scale system that leverages MapReduce paradigm to mine millions of online resale activities from petabyte scale heterogeneous ecommerce data. With the collected data, we show that the number of resale activities leads to a power law distribution with a ‘long tail’, where a significant share of users only resell in very low numbers and a large portion of resales come from a small number of highly active resellers.

We further conduct a comprehensive empirical study from different aspects of resales, including the temporal, spatial patterns, user demographics, reputation and the content of sale postings. Based on these observations, we explore the features related to “successful” resale transactions and evaluate if they can be predictable.

We also discuss uses of this information mining for business insights and user experience on a real-world online marketplace.

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.