Beyond Skylines and Top-k Queries: Representative Databases and e-Commerce Product Search

Tutorial at CIKM-2013
Beyond Skylines and Top-k Queries: Representative Databases and e-Commerce Product Search
Atish Das Sarma, Ashwin Lall, Nish Parikh, Neel Sundaresan

Skyline queries have been a topic of intense study in the database area for over a decade now. Similarly, the top-k retrieval query has been heavily investigated by both the database as well as the web research communities. This tutorial will delve into the background of these two areas, and specifically focus on the recent challenges with respect to returning a small set of results to users, as well as requiring minimal intervention or input from them.

These are two main concerns with skylines and top-k respectively, and therefore have drawn a great deal of attention in the recent years with several interesting ideas being proposed in the research community. This tutorial will cover the current approaches to representative database selection. We will focus on both the theoretical models as well as the practical aspects from an industry standpoint.

The topics of covered in this tutorial will include identifying representative subsets of the skyline set, interaction based approaches, e-commerce product search, and leveraging aggregate user preference statistics.

Another publication from the same category: Machine Learning and Data Science

WWW '17 Perth Australia April 2017

Drawing Sound Conclusions from Noisy Judgments

David Goldberg, Andrew Trotman, Xiao Wang, Wei Min, Zongru Wan

The quality of a search engine is typically evaluated using hand-labeled data sets, where the labels indicate the relevance of documents to queries. Often the number of labels needed is too large to be created by the best annotators, and so less accurate labels (e.g. from crowdsourcing) must be used. This introduces errors in the labels, and thus errors in standard precision metrics (such as P@k and DCG); the lower the quality of the judge, the more errorful the labels, consequently the more inaccurate the metric. We introduce equations and algorithms that can adjust the metrics to the values they would have had if there were no annotation errors.

This is especially important when two search engines are compared by comparing their metrics. We give examples where one engine appeared to be statistically significantly better than the other, but the effect disappeared after the metrics were corrected for annotation error. In other words the evidence supporting a statistical difference was illusory, and caused by a failure to account for annotation error.