Building a Network of E-commerce Concepts

Lightning Talk and Poster @ Extremely Large Databases XLDB 2013.
Building a Network of E-commerce Concepts
Sandip Gaikwad, Sanjay Ghatare, Nish Parikh, Rajendra Shinde
Abstract

We present a method for developing a network of e-commerce concepts. We define concepts as collection of terms that represent product entities or commerce ideas that users are interested in. We start by looking at large corpora (Billions) of historical eBay buyer queries and seller item titles.

We approach the problem of concept extraction from corpora as a market-baskets problem by adapting statistical measures of support and confidence. The concept-centric meta-data extraction pipeline is built over a map-reduce framework. We constrain the concepts to be both popular and concise.

Evaluation of our algorithm shows that high precision concept sets can be automatically mined. The system mines the full spectrum of precise e-commerce concepts ranging all the way from "ipod nano" to "I'm not a plastic bag" and from "wakizashi sword" to "mastodon skeleton".

Once the concepts are detected, they are linked into a network using different metrics of semantic similarity between concepts. This leads to a rich network of e-commerce vocabulary. Such a network of concepts can be the basis of enabling powerful applications like e-commerce search and discover as well as automatic e-commerce taxonomy generation. We present details about the extraction platform, and algorithms for segmentation of short snippets of e-commerce text as well as detection and linking of concepts.

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Keywords