Chelsea Won, and You Bought a T-shirt: Characterizing the Interplay Between Twitter and E-Commerce

In proceedings of The 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013. 829-836. (Best Paper Award Winner)
Chelsea Won, and You Bought a T-shirt: Characterizing the Interplay Between Twitter and E-Commerce
Haipeng Zhang, Nish Parikh, Neel Sundaresan
eBay Authors
Abstract

The popularity of social media sites like Twitter and Facebook opens up interesting research opportunities for understanding the interplay of social media and e-commerce. Most research on online behavior, up until recently, has focused mostly on social media behaviors and e-commerce behaviors independently.

In our study we choose a particular global ecommerce platform (eBay) and a particular global social media platform (Twitter). We quantify the characteristics of the two individual trends as well as the correlations between them.

We provide evidences that about 5% of general eBay query streams show strong positive correlations with the corresponding Twitter mention streams, while the percentage jumps to around 25% for trending eBay query streams. Some categories of eBay queries, such as 'Video Games' and 'Sports', are more likely to have strong correlations.

We also discover that eBay trend lags Twitter for correlated pairs and the lag differs across categories. We show evidences that celebrities' popularities on Twitter correlate well with their relevant search and sales on eBay.

The correlations and lags provide predictive insights for future applications that might lead to instant merchandising opportunities for both sellers and e-commerce platforms.

Another publication from the same author:

In proceedings of the Workshop on Log-based Personalization (the 4th WSCD workshop) at WSDM 2014

A Large Scale Query Logs Analysis for Assessing Personalization Opportunities in E-commerce Sites

Neel Sundaresan, Zitao Liu

Personalization offers the promise of improving online search and shopping experience. In this work, we perform a large scale analysis on the sample of eBay query logs, which involves 9.24 billion session data spanning 12 months (08/2012-07/2013) and address the following topics

(1) What user information is useful for personalization;

(2) Importance of per-query personalization

(3) Importance of recency in query prediction.

In this paper, we study these problems and provide some preliminary conclusions

Keywords
Categories

Another publication from the same category: Machine Learning and Data Science

IEEE Computing Conference 2018, London, UK

Regularization of the Kernel Matrix via Covariance Matrix Shrinkage Estimation

The kernel trick concept, formulated as an inner product in a feature space, facilitates powerful extensions to many well-known algorithms. While the kernel matrix involves inner products in the feature space, the sample covariance matrix of the data requires outer products. Therefore, their spectral properties are tightly connected. This allows us to examine the kernel matrix through the sample covariance matrix in the feature space and vice versa. The use of kernels often involves a large number of features, compared to the number of observations. In this scenario, the sample covariance matrix is not well-conditioned nor is it necessarily invertible, mandating a solution to the problem of estimating high-dimensional covariance matrices under small sample size conditions. We tackle this problem through the use of a shrinkage estimator that offers a compromise between the sample covariance matrix and a well-conditioned matrix (also known as the "target") with the aim of minimizing the mean-squared error (MSE). We propose a distribution-free kernel matrix regularization approach that is tuned directly from the kernel matrix, avoiding the need to address the feature space explicitly. Numerical simulations demonstrate that the proposed regularization is effective in classification tasks.

Keywords