Data Design for Personalization: Current Challenges and Emerging Opportunities

Workshop at WSDM-2014
Data Design for Personalization: Current Challenges and Emerging Opportunities
Elizabeth Churchill, Atish Das Sarma
Abstract

Personalization is central to most Internet experiences. Personalization is a data-driven process, whether the data are explicitly gathered (e.g., by asking people to fill out forms) or implicitly (e.g. through analysis of behavioral data).

It is clear that designing for effective personalization poses interesting engineering and computer science challenges. However, personalization is also a user experience issue. We believe that encouraging dialogue and collaboration between data mining experts, content providers, and user-focused researchers will offer gains in the area of personalization for search and for other domains.

This workshop is part of a larger effort we are developing: D2D: Data to Design - Design to Data.

Our vision is to provide a forum for researchers and practitioners in computer and systems sciences, data sciences, machine learning, information retrieval, interaction and interface design, and human computer interaction to interact.

Our goal is to explore issues surrounding content and presentation personalization across different devices, and to set an agenda for cross-discipline, collaborative engagement.

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Keywords