Dynamic Conditional Random Fields for Jointly Labeling Multiple Sequences

NIPS workshop on Syntax, Semantics, and Statistics, Vancouver, Canada, December 2003
Dynamic Conditional Random Fields for Jointly Labeling Multiple Sequences
Andrew McCallum, Khashayar Rohanimanesh, Charles Sutton, Andrew McCallum, Khashayar Rohanimanesh, Charles Sutton

Conditional random fields (CRFs) for sequence modeling have several advantages over joint models such as HMMs, including the ability to relax strong independence assumptions made in those models, and the ability to incorporate arbitrary overlapping features. Previous work has focused on linear-chain CRFs, which correspond to finite-statemachines, and have efficient exact inference algorithms.

Often, however, we wish to label sequence data in multiple interacting ways—for example, performing part-of-speech tagging and noun phrase segmentation simultaneously, increasing joint accuracy by sharing information between them.

We present dynamic conditional randomfields (DCRFs), which are CRFs in which each time slice has a set of state variables and edges—a distributed state representation as in dynamic Bayesian networks—and parameters are tied across slices. (They could also be called conditionallytrained Dynamic Markov Networks.) Since exact inference can be intractable in these models, we perform approximate inference using the tree-based reparameterization framework (TRP). We also present empirical results comparing DCRFs with linear-chain CRFs on natural language data.

Another publication from the same category: Machine Learning and Data Science

WWW '17 Perth Australia April 2017

Drawing Sound Conclusions from Noisy Judgments

David Goldberg, Andrew Trotman, Xiao Wang, Wei Min, Zongru Wan

The quality of a search engine is typically evaluated using hand-labeled data sets, where the labels indicate the relevance of documents to queries. Often the number of labels needed is too large to be created by the best annotators, and so less accurate labels (e.g. from crowdsourcing) must be used. This introduces errors in the labels, and thus errors in standard precision metrics (such as P@k and DCG); the lower the quality of the judge, the more errorful the labels, consequently the more inaccurate the metric. We introduce equations and algorithms that can adjust the metrics to the values they would have had if there were no annotation errors.

This is especially important when two search engines are compared by comparing their metrics. We give examples where one engine appeared to be statistically significantly better than the other, but the effect disappeared after the metrics were corrected for annotation error. In other words the evidence supporting a statistical difference was illusory, and caused by a failure to account for annotation error.