E-commerce Product Search: Personalization, Diversification, and beyond

Tutorial at WWW-2014
E-commerce Product Search: Personalization, Diversification, and beyond
Atish Das Sarma, Nish Parikh, Neel Sundaresan

The focus of this tutorial will be e-commerce product search. Several research challenges appear in this context, both from a research standpoint as well as an application standpoint. We will present various approaches adopted in the industry,

review well-known research techniques developed over the last decade, draw parallels to traditional web search highlighting the new challenges in this setting, and dig deep into some of the algorithmic and technical approaches developed for this context.

A specific approach that will involve a deep dive into literature, theoretical techniques, and practical impact is that of identifying most suited results quickly from a large database, with settings various across cold start users, and those for whom personalization is possible.

In this context, top-k and skylines will be discussed specifically as they form a key approach that spans the web, data mining, and database communities and presents a powerful tool for search across multi-dimensional items with clear preferences within each attribute, like product search as opposed to regular web search.

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.