Eagle: User Profile-based Anomaly Detection for Securing Hadoop Clusters

Santa Clara, Oct. 29 2015-Nov. 1 2015
Eagle: User Profile-based Anomaly Detection for Securing Hadoop Clusters
Chaitali Gupta, Ranjan Sinha, Yong Zhang
eBay Authors
Abstract

Existing Big data analytics platforms, such as Hadoop, lack support for user activity monitoring. Several diagnostic tools such as Ganglia, Ambari, and Cloudera Manager are available to monitor health of a cluster, however, they do not provide algorithms to detect security threats or perform user activity monitoring. Hence, there is a need to develop a scalable system that can detect malicious user activities, especially in real-time, so that appropriate actions can be taken against the user. At eBay, we developed such a system named Eagle, which collects audit logs from Hadoop clusters and applications running on them, analyzes users behavior, generates profiles per user of the system, and predicts anomalous user activities based on their prior profiles. Eagle is a highly scalable system, capable of monitoring multiple eBay clusters in real-time. It includes machine-learning algorithms that create user profiles based on the user's history of activities. As far as we know, this is the first activity monitoring system on the Hadoop-ecosystem for the detection of intrusion-related activities using behavior-based profiles of users. When a user performs any operation in the cluster, Eagle matches current user action against his prior activity pattern and raises alarm if it suspects anomalous action. We investigate two machine-learning algorithms: density estimation, and principal component analysis (PCA). In this paper, we introduce the Eagle system, discuss the algorithms in detail, and show performance results. We demonstrate that the sensitivity of the density estimation algorithm is 93%, however the sensitivity of our system increases by 4.94% (on average) to 98% (approximately) by using an ensemble of the two algorithms during anomaly detection.

Another publication from the same category: Machine Learning and Data Science

WWW '17 Perth Australia April 2017

Drawing Sound Conclusions from Noisy Judgments

David Goldberg, Andrew Trotman, Xiao Wang, Wei Min, Zongru Wan

The quality of a search engine is typically evaluated using hand-labeled data sets, where the labels indicate the relevance of documents to queries. Often the number of labels needed is too large to be created by the best annotators, and so less accurate labels (e.g. from crowdsourcing) must be used. This introduces errors in the labels, and thus errors in standard precision metrics (such as P@k and DCG); the lower the quality of the judge, the more errorful the labels, consequently the more inaccurate the metric. We introduce equations and algorithms that can adjust the metrics to the values they would have had if there were no annotation errors.

This is especially important when two search engines are compared by comparing their metrics. We give examples where one engine appeared to be statistically significantly better than the other, but the effect disappeared after the metrics were corrected for annotation error. In other words the evidence supporting a statistical difference was illusory, and caused by a failure to account for annotation error.

Keywords