Efficient Media Retrieval from Non-Cooperative Queries

ICVS, July, 2015
Efficient Media Retrieval from Non-Cooperative Queries
Kevin Shih, Wei Di, Vignesh Jagadeesh, Robinson Piramuthu
eBay Authors

Text is ubiquitous in the artificial world and easily attainable when it comes to book title and author names. Using the images from the book cover set from the Stanford Mobile Visual Search dataset and additional book covers and metadata from openlibrary.org, we construct a large scale book cover retrieval dataset, complete with 100K distractor covers and title and author strings for each.

Because our query images are poorly conditioned for clean text extraction, we propose a method for extracting a matching noisy and erroneous OCR readings and matching it against clean author and book title strings in a standard document look-up problem setup.

Finally, we demonstrate how to use this text-matching as a feature in conjunction with popular retrieval features such as VLAD using a simple learning setup to achieve significant improvements in retrieval accuracy over that of either VLAD or the text alone.

Another publication from the same author: Robinson Piramuthu

WACV, March, 2016

Fashion Apparel Detection: The Role of Deep Convolutional Neural Network and Pose-dependent Priors

Kota Hara, Vignesh Jagadeesh, Robinson Piramuthu

In this work, we propose and address a new computer vision task, which we call fashion item detection, where the aim is to detect various fashion items a person in the image is wearing or carrying. The types of fashion items we consider in this work include hat, glasses, bag, pants, shoes and so on.

The detection of fashion items can be an important first step of various e-commerce applications for fashion industry. Our method is based on state-of-the-art object detection method which combines object proposal methods with a Deep Convolutional Neural Network.

Since the locations of fashion items are in strong correlation with the locations of body joints positions, we incorporate contextual information from body poses in order to improve the detection performance. Through the experiments, we demonstrate the effectiveness of the proposed method.

Another publication from the same category: Computer Vision

Mathematics in Image Formation and Processing, July 2000

Statistical proximal point methods for image reconstruction

A.O. Hero, S. Crétien and Robinson Piramuthu