Live Mobile Collaboration for Video Production

Design, Guidelines, and Requirements, Personal and Ubiquitous Computing, 2012
Live Mobile Collaboration for Video Production
Marco deSa, David Shamma, Elizabeth Churchill
Abstract

Traditional cameras and video equipment are gradually losing the race with smart-phones and small mobile devices that allow video, photo and audio capturing on the go. Users are now quickly creating movies and taking photos whenever and wherever they go, particularly at concerts and events.

Still, in-situ media capturing with such devices poses constraints to any user, especially amateur ones. In this paper, we present the design and evaluation of a mobile video capture suite that allows for cooperative ad-hoc production. Our system relies on ad-hoc in-situ collaboration offering users the ability to switch between streams and cooperate with each other in order to capture better media with mobile devices.

Our main contribution arises from the description of our design process focusing on the prototyping approach and the qualitative analysis that followed. Furthermore, we contribute with lessons and design guidelines that emerged and apply to in-situ design of rich video collaborative experiences and with the elicitation of functional and usability requirements for collaborative video production using mobile devices.

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Keywords