On Segmentation of eCommerce Queries

CIKM ’13 Proceedings of the 22nd ACM international conference on Conference on information & knowledge management Pages 1137-1146
On Segmentation of eCommerce Queries
Nish Parikh, Prasad Sriram, Mohammad AlHasan

In this paper, we present QSEGMENT, a real-life query segmentation system for eCommerce queries. QSEGMENT uses frequency data from the query log which we call buyers′ data and also frequency data from product titles what we call sellers′ data.

We exploit the taxonomical structure of the marketplace to build domain specific frequency models. Using such an approach, QSEGMENT performs better than previously described baselines for query segmentation.

Also, we perform a large scale evaluation by using an unsupervised IR metric which we refer to as user-intent-score. We discuss the overall architecture of QSEGMENT as well as various use cases and interesting observations around segmenting eCommerce queries.

Another publication from the same category: Machine Learning and Data Science

WWW '17 Perth Australia April 2017

Drawing Sound Conclusions from Noisy Judgments

David Goldberg, Andrew Trotman, Xiao Wang, Wei Min, Zongru Wan

The quality of a search engine is typically evaluated using hand-labeled data sets, where the labels indicate the relevance of documents to queries. Often the number of labels needed is too large to be created by the best annotators, and so less accurate labels (e.g. from crowdsourcing) must be used. This introduces errors in the labels, and thus errors in standard precision metrics (such as P@k and DCG); the lower the quality of the judge, the more errorful the labels, consequently the more inaccurate the metric. We introduce equations and algorithms that can adjust the metrics to the values they would have had if there were no annotation errors.

This is especially important when two search engines are compared by comparing their metrics. We give examples where one engine appeared to be statistically significantly better than the other, but the effect disappeared after the metrics were corrected for annotation error. In other words the evidence supporting a statistical difference was illusory, and caused by a failure to account for annotation error.