Personalized Social Recommendations – Accurate or Private?

PVLDB 2011 (Invited to VLDB Journal Special Issue)
Personalized Social Recommendations – Accurate or Private?
Atish Das Sarma, Ashwin Machanavajjhala, Aleksandra Korolova

With the recent surge of social networks such as Facebook, new forms of recommendations have become possible -- recommendations that rely on one's social connections in order to make personalized recommendations of ads, content, products, and people. Since recommendations may use sensitive information, it is speculated that these recommendations are associated with privacy risks. The main contribution of this work is in formalizing trade-offs between accuracy and privacy of personalized social recommendations.

We study whether "social recommendations", or recommendations that are solely based on a user's social network, can be made without disclosing sensitive links in the social graph. More precisely, we quantify the loss in utility when existing recommendation algorithms are modified to satisfy a strong notion of privacy, called differential privacy. We prove lower bounds on the minimum loss in utility for any recommendation algorithm that is differentially private.

We then adapt two privacy preserving algorithms from the differential privacy literature to the problem of social recommendations, and analyze their performance in comparison to our lower bounds, both analytically and experimentally.

We show that good private social recommendations are feasible only for a small subset of the users in the social network or for a lenient setting of privacy parameters.

Another publication from the same category: Machine Learning and Data Science

WWW '17 Perth Australia April 2017

Drawing Sound Conclusions from Noisy Judgments

David Goldberg, Andrew Trotman, Xiao Wang, Wei Min, Zongru Wan

The quality of a search engine is typically evaluated using hand-labeled data sets, where the labels indicate the relevance of documents to queries. Often the number of labels needed is too large to be created by the best annotators, and so less accurate labels (e.g. from crowdsourcing) must be used. This introduces errors in the labels, and thus errors in standard precision metrics (such as P@k and DCG); the lower the quality of the judge, the more errorful the labels, consequently the more inaccurate the metric. We introduce equations and algorithms that can adjust the metrics to the values they would have had if there were no annotation errors.

This is especially important when two search engines are compared by comparing their metrics. We give examples where one engine appeared to be statistically significantly better than the other, but the effect disappeared after the metrics were corrected for annotation error. In other words the evidence supporting a statistical difference was illusory, and caused by a failure to account for annotation error.