Is a picture really worth a thousand words?: - on the role of images in e-commerce

WSDM, 2014
Is a picture really worth a thousand words?: - on the role of images in e-commerce
Wei Di, Neel Sundaresan, Anurag Bhardwaj, Robinson Piramuthu
Keywords
Categories
eBay Authors
Abstract

In online peer-to-peer commerce places where physical examination of the goods is infeasible, textual descriptions, images of the products, reputation of the participants, play key roles. Visual image is a powerful channel to convey crucial information towards e-shoppers and influence their choice.

In this paper, we investigate a well-known online marketplace where over millions of products change hands and most are described with the help of one or more images. We present a systematic data mining and knowledge discovery approach that aims to quantitatively dissect the role of images in e-commerce in great detail. Our goal is two-fold.

First, we aim to get a thorough understanding of impact of images across various dimensions: product categories, user segments, conversion rate. We present quantitative evaluation of the influence of images and show how to leverage different image aspects, such as quantity and quality, to effectively raise sale. Second, we study interaction of image data with other selling dimensions by jointly modeling them with user behavior data.

Results suggest that "watch" behavior encodes complex signals combining both attention and hesitation from buyer, in which image still holds an important role when compared to other selling variables, especially for products for which appearance is important. We conclude on how these findings can benefit sellers in a high competitive online e-commerce market.

Another publication from the same author:

WACV, March, 2016

Fashion Apparel Detection: The Role of Deep Convolutional Neural Network and Pose-dependent Priors

Kota Hara, Vignesh Jagadeesh, Robinson Piramuthu

In this work, we propose and address a new computer vision task, which we call fashion item detection, where the aim is to detect various fashion items a person in the image is wearing or carrying. The types of fashion items we consider in this work include hat, glasses, bag, pants, shoes and so on.

The detection of fashion items can be an important first step of various e-commerce applications for fashion industry. Our method is based on state-of-the-art object detection method which combines object proposal methods with a Deep Convolutional Neural Network.

Since the locations of fashion items are in strong correlation with the locations of body joints positions, we incorporate contextual information from body poses in order to improve the detection performance. Through the experiments, we demonstrate the effectiveness of the proposed method.

Another publication from the same category: Computer Vision

Mathematics in Image Formation and Processing, July 2000

Statistical proximal point methods for image reconstruction

A.O. Hero, S. Crétien and Robinson Piramuthu