Probabilistic Combination of Classifier and Cluster Ensembles for Non-transductive Learning

SIAM 2013
Probabilistic Combination of Classifier and Cluster Ensembles for Non-transductive Learning
Ayan Acharya, Eduardo R.Hruschka, Joydeep Ghosh, Badrul Sarwar, Jean-David Ruvini
Abstract

Unsupervised models can provide supplementary soft constraints to help classify new target data under the assumption that similar objects in the target set are more likely to share the same class label. Such models can also help detect possible dierences between training and target distributions,

which is useful in applications where concept drift may take place. This paper describes a Bayesian frame work that takes as input class labels from existing classefiers (designed based on labeled data from the source domain),

as well as cluster labels from a cluster ensemble operating solely on the target data to be classified and yields a con-ensus labeling of the target data. This framework is particularly useful when the statistics of the target data drift or change from those of the training data.

We also show that the proposed framework is privacy-aware and allows performing distributed learning when data/models have sharing restrictions. Experiments show that our framework can yield superior results to those provided by applying classifier ensembles only.

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Keywords