Rewriting null e-commerce queries to recommend products

WWW (Companion Volume) 2012: 73-82
Rewriting null e-commerce queries to recommend products
Nish Parikh, Neel Sundaresan
eBay Authors
Abstract

In e-commerce applications product descriptions are often concise. E-Commerce search engines often have to deal with queries that cannot be easily matched to product inventory resulting in zero recall or null query situations.

Null queries arise from differences in buyer and seller vocabulary or from the transient nature of products. In this paper, we describe a system that rewrites null e-commerce queries to find matching products as close to the original query as possible.

The system uses query relaxation to rewrite null queries in order to match products. Using eBay as an example of a dynamic marketplace, we show how using temporal feedback that respects product category structure using the repository of expired products, we improve the quality of recommended results.

The system is scalable and can be run in a high volume setting. We show through our experiments that high quality product recommendations for more than 25% of null queries are achievable.

Another publication from the same author: Gyanit Singh

In proceedings of the Workshop on Log-based Personalization (the 4th WSCD workshop) at WSDM 2014

A Large Scale Query Logs Analysis for Assessing Personalization Opportunities in E-commerce Sites

Neel Sundaresan, Zitao Liu

Personalization offers the promise of improving online search and shopping experience. In this work, we perform a large scale analysis on the sample of eBay query logs, which involves 9.24 billion session data spanning 12 months (08/2012-07/2013) and address the following topics

(1) What user information is useful for personalization;

(2) Importance of per-query personalization

(3) Importance of recency in query prediction.

In this paper, we study these problems and provide some preliminary conclusions

Keywords
Categories

Another publication from the same category: Machine Learning and Data Science

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Keywords