Visual Analysis of Massive Web Session Data

in IEEE Large-scale Data Analysis and Visualization (LDAV) 2012
Visual Analysis of Massive Web Session Data
Zeqian Shen, Jishang Wei, Neel Sundaresan, Kwan-Liu Ma, Zeqian Shen, Jishang Wei, Neel Sundaresan, Kwan-Liu Ma
Categories
Abstract

Tracking and recording users’ browsing behaviors on the web down to individual mouse clicks can create massive web session logs.While such web session data contain valuable information about user behaviors, the ever-increasing data size has placed a big challenge to analyzing and visualizing the data.

An efficient data analysis framework requires both powerful computational analysis and interactive visualization. Following the visual analytics mantra "Analyze first, show the important, zoom, filter and analyze further, details on demand", we introduce a two-tier visual analysis system, TrailExplorer2, to discover knowledge from massive log data.

The system supports a visual analysis process iterating between two steps: querying web sessions and visually analyzing the retrieved data. The query happens at the lower tier where terabytes of web session data are processed in a cluster.

At the upper tier, the extracted web sessions with much smaller scale are visualized on a personal computer for interactive exploration. Our system visualizes a sorted list of web sessions’ temporal patterns and enables data exploration at different levels of details.

The query visualization exploration process iterates until a satisfactory conclusion is achieved. We present two case studies of TrailExplorer2 using real world session data from eBay to demonstrate the system's effectiveness.

Another publication from the same category: Economics

Proceedings of the Sixteenth ACM Conference on Economics and Computation (EC '15). ACM, New York, NY, USA (2015)

Canary in the e-Commerce Coal Mine: Detecting and Predicting Poor Experiences Using Buyer-to-Seller Messages

Dimitriy Masterov, Uwe Mayer, Steve Tadelis

Reputation and feedback systems in online marketplaces are often biased, making it difficult to ascertain the quality of sellers. We use post-transaction, buyer-to-seller message traffic to detect signals of unsatisfactory transactions on eBay. We posit that a message sent after the item was paid for serves as a reliable indicator that the buyer may be unhappy with that purchase, particularly when the message included words associated with a negative experience. The fraction of a seller's message traffic that was negative predicts whether a buyer who transacts with this seller will stop purchasing on eBay, implying that platforms can use these messages as an additional signal of seller quality.