Publications

Publications
Publications
We strongly believe in open source and giving to our community. We work directly with researchers in academia and seek out new perspectives with our intern and fellowship programs. We generalize our solutions and release them to the world as open source projects. We host discussions and publish our results.

Publications

Information Systems 60: 34-49 (2016)

Aggregated 2D range queries on clustered points.

Nieves R. Brisaboa, Guillermo de Bernardo, Roberto Konow, Gonzalo Navarro, Diego Seco

Efficient processing of aggregated range queries on two-dimensional grids is a common requirement in information retrieval and data mining systems, for example in Geographic Information Systems and OLAP cubes. We introduce a technique to represent grids supporting aggregated range queries that requires little space when the data points in the grid are clustered, which is common in practice. We show how this general technique can be used to support two important types of aggregated queries, which are ranked range queries and counting range queries. Our experimental evaluation shows that this technique can speed up aggregated queries up to more than an order of magnitude, with a small space overhead.

Keywords
Categories
CERI 2016: 14

Fast compressed-based strategies for author profiling of social media texts

Francisco Claude, Roberto Konow, Susana Ladra

Given a text, it may be useful to determine the age, gender, native language, nationality, personality and other demographic attributes of its author. This task is called author profiling, and has been studied by different areas, especially from linguistics and natural language processing, by extracting different content- and style-based features from training documents and then using various machine learning approaches.

In this paper we address the author profiling task by using several compression-inspired strategies. More specifically, we generate different models to identify the age and the gender of the author of a given document without analysing or extracting specific features from the textual content, making them style-oblivious approaches.

We compare and analyse their behaviour over datasets of different nature. Our results show that by using simple compression-inspired techniques we are able to obtain very competitive results in terms of accuracy and we are orders of magnitude faster for the evaluation phase when compared to other state-of-the-art complex and resource-demanding techniques.

Keywords
Categories
WACV, March, 2016

Fashion Apparel Detection: The Role of Deep Convolutional Neural Network and Pose-dependent Priors

Kota Hara, Vignesh Jagadeesh, Robinson Piramuthu

In this work, we propose and address a new computer vision task, which we call fashion item detection, where the aim is to detect various fashion items a person in the image is wearing or carrying. The types of fashion items we consider in this work include hat, glasses, bag, pants, shoes and so on.

The detection of fashion items can be an important first step of various e-commerce applications for fashion industry. Our method is based on state-of-the-art object detection method which combines object proposal methods with a Deep Convolutional Neural Network.

Since the locations of fashion items are in strong correlation with the locations of body joints positions, we incorporate contextual information from body poses in order to improve the detection performance. Through the experiments, we demonstrate the effectiveness of the proposed method.

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Keywords
Santa Clara, Oct. 29 2015-Nov. 1 2015

Eagle: User Profile-based Anomaly Detection for Securing Hadoop Clusters

Chaitali Gupta, Ranjan Sinha, Yong Zhang

Existing Big data analytics platforms, such as Hadoop, lack support for user activity monitoring. Several diagnostic tools such as Ganglia, Ambari, and Cloudera Manager are available to monitor health of a cluster, however, they do not provide algorithms to detect security threats or perform user activity monitoring. Hence, there is a need to develop a scalable system that can detect malicious user activities, especially in real-time, so that appropriate actions can be taken against the user. At eBay, we developed such a system named Eagle, which collects audit logs from Hadoop clusters and applications running on them, analyzes users behavior, generates profiles per user of the system, and predicts anomalous user activities based on their prior profiles. Eagle is a highly scalable system, capable of monitoring multiple eBay clusters in real-time. It includes machine-learning algorithms that create user profiles based on the user's history of activities. As far as we know, this is the first activity monitoring system on the Hadoop-ecosystem for the detection of intrusion-related activities using behavior-based profiles of users. When a user performs any operation in the cluster, Eagle matches current user action against his prior activity pattern and raises alarm if it suspects anomalous action. We investigate two machine-learning algorithms: density estimation, and principal component analysis (PCA). In this paper, we introduce the Eagle system, discuss the algorithms in detail, and show performance results. We demonstrate that the sensitivity of the density estimation algorithm is 93%, however the sensitivity of our system increases by 4.94% (on average) to 98% (approximately) by using an ensemble of the two algorithms during anomaly detection.

Keywords
Mathematics in Image Formation and Processing, July 2000

Statistical proximal point methods for image reconstruction

A.O. Hero, S. Crétien and Robinson Piramuthu
WACV 2014

Furniture-Geek: Understanding Fine-Grained Furniture Attributes from Freely Associated Text and Tags

Vicente Ordonez, Vignesh Jagadeesh, Wei Di, Anurag Bhardwaj, Robinson Piramuthu

As the amount of user generated content on the internet grows, it becomes ever more important to come up with vision systems that learn directly from weakly annotated and noisy data. We leverage a large scale collection of user generated content comprising of images, tags and title/captions of furniture inventory from an e-commerce website to discover and categorize learnable visual attributes. Furniture categories have long been the quintessential example of why computer vision is hard, and we make one of the first attempts to understand them through a large scale weakly annotated dataset. We focus on a handful of furniture categories that are associated with a large number of fine-grained attributes. We propose a set of localized feature representations built on top of state-of-the-art computer vision representations originally designed for fine-grained object categorization. We report a thorough empirical characterization on the visual identifiability of various fine-grained attributes using these representations and show encouraging results on finding iconic images and on multi-attribute prediction.

Advances in Neural Information Processing Systems (NIPS), 2014

Parallel Feature Selection inspired by Group Testing

Yingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q Ngo, Long Nguyen, Christopher Ré, Venu Govindaraju

This paper presents a parallel feature selection method for classification that scales up to very high dimensions and large data sizes. Our original method is inspired by group testing theory, under which the feature selection procedure consists of a collection of randomized tests to be performed in parallel. Each test corresponds to a subset of features, for which a scoring function may be applied to measure the relevance of the features in a classification task. We develop a general theory providing sufficient conditions under which true features are guaranteed to be correctly identified. Superior performance of our method is demonstrated on a challenging relation extraction task from a very large data set that have both redundant features and sample size in the order of millions. We present comprehensive comparisons with state-of-the-art feature selection methods on a range of data sets, for which our method exhibits competitive performance in terms of running time and accuracy. Moreover, it also yields substantial speedup when used as a pre-processing step for most other existing methods.

Proceedings of the Sixteenth ACM Conference on Economics and Computation (EC '15). ACM, New York, NY, USA (2015)

Canary in the e-Commerce Coal Mine: Detecting and Predicting Poor Experiences Using Buyer-to-Seller Messages

Dimitriy Masterov, Uwe Mayer, Steve Tadelis

Reputation and feedback systems in online marketplaces are often biased, making it difficult to ascertain the quality of sellers. We use post-transaction, buyer-to-seller message traffic to detect signals of unsatisfactory transactions on eBay. We posit that a message sent after the item was paid for serves as a reliable indicator that the buyer may be unhappy with that purchase, particularly when the message included words associated with a negative experience. The fraction of a seller's message traffic that was negative predicts whether a buyer who transacts with this seller will stop purchasing on eBay, implying that platforms can use these messages as an additional signal of seller quality.

Pages