We strongly believe in open source and giving to our community. We work directly with researchers in academia and seek out new perspectives with our intern and fellowship programs. We generalize our solutions and release them to the world as open source projects. We host discussions and publish our results.


WACV, March, 2016

Fashion Apparel Detection: The Role of Deep Convolutional Neural Network and Pose-dependent Priors

Kota Hara, Vignesh Jagadeesh, Robinson Piramuthu

In this work, we propose and address a new computer vision task, which we call fashion item detection, where the aim is to detect various fashion items a person in the image is wearing or carrying. The types of fashion items we consider in this work include hat, glasses, bag, pants, shoes and so on.

The detection of fashion items can be an important first step of various e-commerce applications for fashion industry. Our method is based on state-of-the-art object detection method which combines object proposal methods with a Deep Convolutional Neural Network.

Since the locations of fashion items are in strong correlation with the locations of body joints positions, we incorporate contextual information from body poses in order to improve the detection performance. Through the experiments, we demonstrate the effectiveness of the proposed method.

Washinton DC, 27-30 Oct. 2014

Astro: A Predictive Model for Anomaly Detection and Feedback-based Scheduling on Hadoop

Chaitali Gupta, Mayank Bansal, Tzu-Cheng Chuang, Ranjan Sinha, Sami Ben-romdhane

The sheer growth in data volume and Hadoop cluster size make it a significant challenge to diagnose and locate problems in a production-level cluster environment efficiently and within a short period of time. Often times, the distributed monitoring systems are not capable of detecting a problem well in advance when a large-scale Hadoop cluster starts to deteriorate i n performance or becomes unavailable. Thus, inc o m i n g workloads, scheduled between the time when cluster starts to deteriorate and the time when the problem is identified, suffer from longer execution times. As a result, both reliability and throughput of the cluster reduce significantly. In this paper, we address this problem by proposing a system called Astro, which consists of a predictive model and an extension to the Hadoop scheduler. The predictive model in Astro takes into account a rich set of cluster behavioral information that are collected by monitoring processes and model them using machine learning algorithms to predict future behavior of the cluster. The Astro predictive model detects anomalies in the cluster and also identifies a ranked set of metrics that have contributed the most towards the problem. The Astro scheduler uses the prediction outcome and the list of metrics to decide whether it needs to move and reduce workloads from the problematic cluster nodes or to prevent additional workload allocations to them, in order to improve both throughput and reliability of the cluster. The results demonstrate that the Astro scheduler improves usage of cluster compute resources significantly by 64.23% compared to traditional Hadoop. Furthermore, the runtime of the benchmark application reduced by 26.68% during the time of anomaly, thus improving the cluster throughput.

Santa Clara, Oct. 29 2015-Nov. 1 2015

Eagle: User Profile-based Anomaly Detection for Securing Hadoop Clusters

Chaitali Gupta, Ranjan Sinha, Yong Zhang

Existing Big data analytics platforms, such as Hadoop, lack support for user activity monitoring. Several diagnostic tools such as Ganglia, Ambari, and Cloudera Manager are available to monitor health of a cluster, however, they do not provide algorithms to detect security threats or perform user activity monitoring. Hence, there is a need to develop a scalable system that can detect malicious user activities, especially in real-time, so that appropriate actions can be taken against the user. At eBay, we developed such a system named Eagle, which collects audit logs from Hadoop clusters and applications running on them, analyzes users behavior, generates profiles per user of the system, and predicts anomalous user activities based on their prior profiles. Eagle is a highly scalable system, capable of monitoring multiple eBay clusters in real-time. It includes machine-learning algorithms that create user profiles based on the user's history of activities. As far as we know, this is the first activity monitoring system on the Hadoop-ecosystem for the detection of intrusion-related activities using behavior-based profiles of users. When a user performs any operation in the cluster, Eagle matches current user action against his prior activity pattern and raises alarm if it suspects anomalous action. We investigate two machine-learning algorithms: density estimation, and principal component analysis (PCA). In this paper, we introduce the Eagle system, discuss the algorithms in detail, and show performance results. We demonstrate that the sensitivity of the density estimation algorithm is 93%, however the sensitivity of our system increases by 4.94% (on average) to 98% (approximately) by using an ensemble of the two algorithms during anomaly detection.

Mathematics in Image Formation and Processing, July 2000

Statistical proximal point methods for image reconstruction

A.O. Hero, S. Crétien and Robinson Piramuthu
WACV 2014

Furniture-Geek: Understanding Fine-Grained Furniture Attributes from Freely Associated Text and Tags

Vicente Ordonez, Vignesh Jagadeesh, Wei Di, Anurag Bhardwaj, Robinson Piramuthu

As the amount of user generated content on the internet grows, it becomes ever more important to come up with vision systems that learn directly from weakly annotated and noisy data. We leverage a large scale collection of user generated content comprising of images, tags and title/captions of furniture inventory from an e-commerce website to discover and categorize learnable visual attributes. Furniture categories have long been the quintessential example of why computer vision is hard, and we make one of the first attempts to understand them through a large scale weakly annotated dataset. We focus on a handful of furniture categories that are associated with a large number of fine-grained attributes. We propose a set of localized feature representations built on top of state-of-the-art computer vision representations originally designed for fine-grained object categorization. We report a thorough empirical characterization on the visual identifiability of various fine-grained attributes using these representations and show encouraging results on finding iconic images and on multi-attribute prediction.

Advances in Neural Information Processing Systems (NIPS), 2014

Parallel Feature Selection inspired by Group Testing

Yingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q Ngo, Long Nguyen, Christopher Ré, Venu Govindaraju

This paper presents a parallel feature selection method for classification that scales up to very high dimensions and large data sizes. Our original method is inspired by group testing theory, under which the feature selection procedure consists of a collection of randomized tests to be performed in parallel. Each test corresponds to a subset of features, for which a scoring function may be applied to measure the relevance of the features in a classification task. We develop a general theory providing sufficient conditions under which true features are guaranteed to be correctly identified. Superior performance of our method is demonstrated on a challenging relation extraction task from a very large data set that have both redundant features and sample size in the order of millions. We present comprehensive comparisons with state-of-the-art feature selection methods on a range of data sets, for which our method exhibits competitive performance in terms of running time and accuracy. Moreover, it also yields substantial speedup when used as a pre-processing step for most other existing methods.

Proceedings of the Sixteenth ACM Conference on Economics and Computation (EC '15). ACM, New York, NY, USA (2015)

Canary in the e-Commerce Coal Mine: Detecting and Predicting Poor Experiences Using Buyer-to-Seller Messages

Reputation and feedback systems in online marketplaces are often biased, making it difficult to ascertain the quality of sellers. We use post-transaction, buyer-to-seller message traffic to detect signals of unsatisfactory transactions on eBay. We posit that a message sent after the item was paid for serves as a reliable indicator that the buyer may be unhappy with that purchase, particularly when the message included words associated with a negative experience. The fraction of a seller's message traffic that was negative predicts whether a buyer who transacts with this seller will stop purchasing on eBay, implying that platforms can use these messages as an additional signal of seller quality.

ICCV, December, 2015

HD-CNN: Hierarchical Deep Convolutional Neural Network for Image Classification

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, Yizhou Yu

In image classification, visual separability between different object categories is highly uneven, and some categories are more difficult to distinguish than others. Such difficult categories demand more dedicated classifiers. However, existing deep convolutional neural networks (CNN) are trained as flat N-way classifiers, and few efforts have been made to leverage the hierarchical structure of categories.

In this paper, we introduce hierarchical deep CNNs (HD-CNNs) by embedding deep CNNs into a category hierarchy. An HD-CNN separates easy classes using a coarse category classifier while distinguishing difficult classes using fine category classifiers. During HD-CNN training, component-wise pretraining is followed by global finetuning with a multinomial logistic loss regularized by a coarse category consistency term.

In addition, conditional executions of fine category classifiers and layer parameter compression make HD-CNNs scalable for large-scale visual recognition. We achieve state-of-the-art results on both CIFAR100 and large-scale ImageNet 1000-class benchmark datasets. In our experiments, we build up three different HD-CNNs and they lower the top-1 error of the standard CNNs by 2.65%, 3.1% and 1.1%, respectively.