We strongly believe in open source and giving to our community. We work directly with researchers in academia and seek out new perspectives with our intern and fellowship programs. We generalize our solutions and release them to the world as open source projects. We host discussions and publish our results.


In proceedings of the Workshop on Log-based Personalization (the 4th WSCD workshop) at WSDM 2014

A Large Scale Query Logs Analysis for Assessing Personalization Opportunities in E-commerce Sites

Neel Sundaresan, Zitao Liu

Personalization offers the promise of improving online search and shopping experience. In this work, we perform a large scale analysis on the sample of eBay query logs, which involves 9.24 billion session data spanning 12 months (08/2012-07/2013) and address the following topics

(1) What user information is useful for personalization;

(2) Importance of per-query personalization

(3) Importance of recency in query prediction.

In this paper, we study these problems and provide some preliminary conclusions

CHIMoney (Workshop at CHI-2014)

Shopping with Bonus Money: eBay, loyalty schemes and consumer spending

Darrell Hoy, Elizabeth Churchill, Atish Das Sarma, Kamal Jain, Darrell Hoy, Elizabeth Churchill, Atish Das Sarma, Kamal Jain

No information

In ECIR 2014 (To Appear)

A Study of Query Term Deletion using Large-scale E-commerce Search Logs

Bishan Yang, Nish Parikh, Gyanit Singh, Neel Sundaresan

Query term deletion is one of the commonly used strategies for query rewriting. In this paper, we study the problem of query term deletion using large-scale e-commerce search logs. Especially we focus on queries that do not lead to user clicks and aim to predict a reduced and better query that can lead to clicks by term deletion. Accurate prediction of term deletion can potentially help users recover from poor search results and improve shopping experience.

To achieve this,we use various term-dependent and query-dependent measures as features and build a classifier to predict which term is the most likely to be deleted from a given query. Different from previous work on query term deletion, we compute the features not only based on the query history and the available document collection, but also conditioned on the query category, which captures the high-level context of the query.

We validate our approach using a large collection of query sessions logs from a leading e-commerce site, and show that it provides promising performance in term deletion prediction, and significantly outperforms baselines that rely on query history and corpus-based statistics without incorporating the query context information.

International Symposium on Electronic Imaging Symposium, February 2016

Im2Fit: Fast 3D Model Fitting and Anthropometrics using Single Consumer Depth Camera and Synthetic Data

Qiaosong Wang, Vignesh Jagadeesh, Bryan Ressler, Robinson Piramuthu

Recent advances in consumer depth sensors have created many opportunities for human body measurement and modeling. Estimation of 3D body shape is particularly useful for fashion e-commerce applications such as virtual try-on or fit personalization.

In this paper, we propose a method for capturing accurate human body shape and anthropometrics from a single consumer grade depth sensor. We first generate a large dataset of synthetic 3D human body models using real-world body size distributions.

Next, we estimate key body measurements from a single monocular depth image. We combine body measurement estimates with local geometry features around key joint positions to form a robust multi-dimensional feature vector.

This allows us to conduct a fast nearest-neighbor search to every sample in the dataset and return the closest one. Compared to existing methods, our approach is able to predict accurate full body parameters from a partial view using measurement parameters learned from the synthetic dataset.

Furthermore, our system is capable of generating 3D human mesh models in real-time, which is significantly faster than methods which attempt to model shape and pose deformations.

To validate the efficiency and applicability of our system, we collected a dataset that contains frontal and back scans of 83 clothed people with ground truth height and weight. Experiments on real-world dataset show that the proposed method can achieve real-time performance with competing results achieving an average error of 1.9 cm in estimated measurements.

arXiv, June, 2014

When relevance is not Enough: Promoting Visual Attractiveness for Fashion E-commerce

Wei Di, Anurag Bhardwaj, Vignesh Jagadeesh, Robinson Piramuthu, Elizabeth Churchill

Fashion, and especially apparel, is the fastest-growing category in online shopping. As consumers requires sensory experience especially for apparel goods for which their appearance matters most, images play a key role not only in conveying crucial information that is hard to express in text, but also in affecting consumer's attitude and emotion towards the product.

However, research related to e-commerce product image has mostly focused on quality at perceptual level, but not the quality of content, and the way of presenting.This study aims to address the effectiveness of types of image in showcasing fashion apparel in terms of its attractiveness, i.e. the ability to draw consumer's attention, interest, and in return their engagement.

We apply advanced vision technique to quantize attractiveness using three common display types in fashion filed, i.e. human model, mannequin, and flat. We perform two-stage study by starting with large scale behavior data from real online market, then moving to well designed user experiment to further deepen our understandings on consumer's reasoning logic behind the action.

We propose a Fisher noncentral hypergeometric distribution based user choice model to quantitatively evaluate user's preference. Further, we investigate the potentials to leverage visual impact for a better search that caters to user's preference. A visual attractiveness based re-ranking model that incorporates both presentation efficacy and user preference is proposed. We show quantitative improvement by promoting visual attractiveness into search on top of relevance.

arXiv, May, 2014

Enhancing Visual Fashion Recommendations with Users in the Loop

Anurag Bhardwaj, Vignesh Jagadeesh, Wei Di, Robinson Piramuthu, Elizabeth Churchill

We describe a completely automated large scale visual recommendation system for fashion. Existing approaches have primarily relied on purely computational models to solving this problem that ignore the role of users in the system.

In this paper, we propose to overcome this limitation by incorporating a user-centric design of visual fashion recommendations. Specifically, we propose a technique that augments 'user preferences' in models by exploiting elasticity in fashion choices. We further design a user study on these choices and gather results from the 'wisdom of crowd' for deeper analysis.

Our key insights learnt through these results suggest that fashion preferences when constrained to a particular class, contain important behavioral signals that are often ignored in recommendation design.

Further, presence of such classes also reflect strong correlations to visual perception which can be utilized to provide aesthetically pleasing user experiences. Finally, we illustrate that user approval of visual fashion recommendations can be substantially improved by carefully incorporating these user-centric feedback into the system framework.

Tutorial at WWW-2014

E-commerce Product Search: Personalization, Diversification, and beyond

Atish Das Sarma, Nish Parikh, Neel Sundaresan

The focus of this tutorial will be e-commerce product search. Several research challenges appear in this context, both from a research standpoint as well as an application standpoint. We will present various approaches adopted in the industry,

review well-known research techniques developed over the last decade, draw parallels to traditional web search highlighting the new challenges in this setting, and dig deep into some of the algorithmic and technical approaches developed for this context.

A specific approach that will involve a deep dive into literature, theoretical techniques, and practical impact is that of identifying most suited results quickly from a large database, with settings various across cold start users, and those for whom personalization is possible.

In this context, top-k and skylines will be discussed specifically as they form a key approach that spans the web, data mining, and database communities and presents a powerful tool for search across multi-dimensional items with clear preferences within each attribute, like product search as opposed to regular web search.

CVPR 2014

Region-based Discriminative Feature Pooling for Scene Text Recognition

Chen Yu Lee, Anurag Bhardwaj, Wei Di, Vignesh Jagadeesh, Robinson Piramuthu

We present a new feature representation method for scene text recognition problem, particularly focusing on improving scene character recognition. Many existing methods rely on Histogram of Oriented Gradient (HOG) or part based models, which do not span the feature space well for characters in natural scene images, especially given large variation in fonts with cluttered backgrounds.

In this work, we propose a discriminative feature pooling method that automatically learns the most informative sub-regions of each scene character within a multi-class classification framework, whereas each sub-region seamlessly integrates a set of low-level image features through integral images.

The proposed feature representation is compact, computationally efficient, and able to effectively model distinctive spatial structures of each individual character class. Extensive experiments conducted on challenging datasets (Chars74K, ICDAR’03, ICDAR’11, SVT) show that our method significantly outperforms existing methods on scene character classification and scene text recognition tasks.