Nish Parikh

Nish Parikh
Research Scientist

Nish joined eBay Research Labs in February 2008. At eBay Research Labs, he works on query analysis, recommender systems and large-scale data processing. Prior to joining eBay Research Labs he was part of the team that launched eBay's Next Generation Search Engine Voyager which supports near real-time indexing of products and serves more than 250M queries a day.

Prior to joining eBay, Nish received an M.S. in Computer Science from University of Southern California and a B.S. in Electrical Engineering from Gujarat University where he was awarded a gold medal for academic excellence.

In 12th International Workshop on Agent Mediated Electronic Commerce (AMEC-10) Toronto, Canada, May 2010

Modeling Seller Listing Strategies

Quang Duong, Neel Sundaresan, Zeqian Shen

Online markets have enjoyed explosive growths and emerged as an important research topic in the field of electronic commerce. Researchers have mostly focused on studying consumer behavior and experience, while largely neglecting the seller side of these markets.

Our research addresses the problem of examining strategies sellers employ in listing their products on online market places. In particular, we introduce a Markov Chain model that captures and predicts seller listing behavior based on their present and past actions, their relative positions in the market, and market conditions. These features distinguish our approach from existing models that usually overlook the importance of historical information, as well as sellers’ interactions.

We choose to examine successful sellers on eBay, one of the most prominent online marketplaces, and empirically test our model framework using eBay’s data for fixed-priced items collected over a period of four and a half months.

This empirical study entails comparing our most complex history-dependent model’s predictive power against that of a semi-random behavior baseline model and our own history-independent model. The outcomes exhibit differences between different sellers in their listing strategies for different products, and validate our models’ capability in capturing seller behavior. Furthermore, the incorporation of historical information on seller actions in our model proves to improve its predictions of future behavior

WSDM 2011: 765-774, Hong Kong, February 2011

Query suggestion for E-commerce sites

Mohammad AlHasan, Nish Parikh, Gyanit Singh, Neel Sundaresan

Query suggestion module is an integral part of every search engine. It helps search engine users narrow or broaden their searches. Published work on query suggestion methods has mainly focused on the web domain. But, the module is also popular in the domain of e-commerce for product search.

In this paper, we discuss query suggestion and its methodologies in the context of e-commerce search engines. We show that dynamic inventory combined with long and sparse tail of query distribution poses unique challenges to build a query suggestion method for an e-commerce marketplace.

We compare and contrast the design of a query suggestion system for web search engines and e-commerce search engines. Further, we discuss interesting measures to quantify the effectiveness of our query suggestion methodologies. We also describe the learning gained from exposing our query suggestion module to a vibrant community of millions of users.

In ECIR 2014 (To Appear)

A Study of Query Term Deletion using Large-scale E-commerce Search Logs

Bishan Yang, Nish Parikh, Gyanit Singh, Neel Sundaresan

Query term deletion is one of the commonly used strategies for query rewriting. In this paper, we study the problem of query term deletion using large-scale e-commerce search logs. Especially we focus on queries that do not lead to user clicks and aim to predict a reduced and better query that can lead to clicks by term deletion. Accurate prediction of term deletion can potentially help users recover from poor search results and improve shopping experience.

To achieve this,we use various term-dependent and query-dependent measures as features and build a classifier to predict which term is the most likely to be deleted from a given query. Different from previous work on query term deletion, we compute the features not only based on the query history and the available document collection, but also conditioned on the query category, which captures the high-level context of the query.

We validate our approach using a large collection of query sessions logs from a leading e-commerce site, and show that it provides promising performance in term deletion prediction, and significantly outperforms baselines that rely on query history and corpus-based statistics without incorporating the query context information.

In proceedings of the Workshop on Log-based Personalization (the 4th WSCD workshop) at WSDM 2014

A Large Scale Query Logs Analysis for Assessing Personalization Opportunities in E-commerce Sites

Neel Sundaresan, Zitao Liu

Personalization offers the promise of improving online search and shopping experience. In this work, we perform a large scale analysis on the sample of eBay query logs, which involves 9.24 billion session data spanning 12 months (08/2012-07/2013) and address the following topics

(1) What user information is useful for personalization;

(2) Importance of per-query personalization

(3) Importance of recency in query prediction.

In this paper, we study these problems and provide some preliminary conclusions